Graph Neural Networks - Notes

Nihal V. Nayak
Update: September 2020

Introduction

Graph Neural Networks (GNN) is a type of neural network which learns the
structure of a graph. Learning graph structure allows us to represent the nodes
of the graph in the euclidean space which can be useful for several downstream
machine learning tasks. Recent work on GNN has shown impressive performance
on link prediction, node classification and semi-supervised classification tasks.
Since there is a growing interest in the machine learning community to learn
more about these techniques, this document provides an introduction to GNN'.

The document is organized as follows: First, we introduce the basic concepts
of graphs and networks. Second, we describe the major steps used in GNNs to
compute node embeddings. Next, we describe three GNN techniques that are
commonly mentioned in the existing literature. Finally, we include a limited
survey of other notable works in the field.

1 Basics

In this section, we will review the basics of networks that will be useful to
understand the forthcoming sections.
Graphs consist of a set of nodes V and edges FE. They are normally repre-
sented with an unweighted adjacency matrix A, which consists of 1s and Os.
For example, take a look at the graph in figure 1. The graph has 3 nodes
and 2 edges. The adjacency matrix is as follows:
01 0
10 1 (1)
01 0
The degree matrix is a diagonal matrix that contains information about the
degree of each node. The Degree of a node indicates the number of terminating
edges for a node (self-loop counts as 2). For example, the degree matrix for fig.
1 is as follows:

IThis document assumes that you are familiar with the basics of deep learning

Figure 1: Graph with 3 nodes and 2 undirected edges

(2)

OO =
o N O
= o O

In GNN, each node v is associated with a feature vector =, € R?. Typically,
the feature vector is randomly initialized and trained on a downstream task.

Although we have not introduced graph neural network, it would be useful
to know how to compute the neighbors for a node. For example, from Figure 1
the neighbours of the node b are:

N(b) ={a, c} (3)

where N(.) is the neighbour function. Likewise, the neighbor of the node a

is:
Na) = {b} (4)
As you can see, each node can have a varying number of neighbors. There-

fore, we need a neural network that can deal with the varying number of neigh-
bors.

2 Learning on Graphs

Graph neural network (GNN) is a family of algorithms that learns the structure
of the graph in the euclidean space (Hamilton et al., 2017b).
A basic GNN consists of two components:

e Aggregate: For a given node, the Aggregate step applies a permutation
invariant function to its neighbors to generate the aggregated node feature

e Combine: For a given node, Combine step passes the aggregated node
feature to a learnable layer to generate node embedding for the GNN
layer

The GNN layers are stacked together to increase the receptive field of clus-
tering. For example, in Fig. 2 we have 2 GNN layers. This means that for every
node, we aggregate over the 2-hop neighborhood.

— GNN —> GNN "

Figure 2: Left: 2 GNN layers stacked together and Right: shows the how the
node feature is generated for a node (green) in a 2 layer GNN. The node (green)
learns the node embedding by aggregating over 2-hop neighbourhood.

Aggregate and Combine components are also called message passing phase
and readout phase in the message passing neural network framework (Gilmer
et al., 2017).

2.1 Formal Definition

Consider the Graph G = (V, E), where V is the set of node with features X,.
There are two main steps - Aggregate and Combine at each [-th layer of the
GNN:

all) = Aggregate”) ({hf}‘l)Vu € /\/(v)}) (5)

where agl) is the aggregated node feature of the neighbourhood, hg 1 s the
node feature in neighbourhood N(.) of node v.

A = Combine”) (h,(f_l),aff)) (6)
where hg,l) is the node representation at the [-th iteration. hE,O) = x, where
T, is the initial feature vector for the node.

3 Graph Convolutional Networks (GCN)

GCN (Kipf and Welling, 2016) is a graph neural network technique that makes
use of the symmetrically normalized graph Laplacian to compute the node em-
beddings. Each GCN block receives node features from the (I —1)th GCN block,
i.e. the node features from the previous layer is passed to the next GCN layer,
which allows for greater Laplacian smoothing (Li et al., 2018).

3.1 Aggregate

Since we don’t always have access to the entire graph structure to compute
the symmetrically normalized graph Laplacian, GCN has been interpreted as a
mean aggregator (Xu et al., 2018a). Therefore,

al) = Mean ({h,(f_l),u € N(v) U{v}}) (7)

For each node v, the algorithm takes the mean of the neighborhood node
features along with its feature (self-loop) to compute the aggregated node feature
ag) for the lth layer. This formulation makes GCN an inductive graph neural
network.

3.2 Combine
)

The aggregated node feature a,’ is multiplied with a learnable weight matrix
followed by a non-linear activation (ReLU) to get the node feature hPfor the
Ith layer,

h{) = ReLU (W“)agl)) 8)

where W) € Rl-1%dw is the learnable weight matrix.

4 GraphSage

GraphSage (Hamilton et al., 2017a) is a spatial graph neural network algorithm
that learns node embeddings by sampling and aggregating neighbors from mul-
tiple hops. GraphSage, unlike GCN, is an inductive learning algorithm which
means that it does not require the entire graph structure during learning.

In the original GraphSage paper, the authors describe multiple aggregators
- mean-pooling, max-pooling and LSTM aggregator. In this section, we’ll be
describing the LSTM aggregator and the combine from the original paper. For
simplicity, we do not sample the neighborhood nodes as well.

4.1 Aggregate

GraphSage makes uses of a LSTM aggregator to compute an aggregated node
feature. Since LSTM is not permutation invariant, the authors shuffle the neigh-
bourhood nodes to compute the aggregated vector.

() = LSTM ({h,(f‘l),u € N(v)}) 9)

where ag,l) is the aggregated node feature for the Ith layer. Wéf;ll) and b are
the learnable parameters.

4.2 Combine

The combine function concatenates the (I — 1)th layer node feature A with
the aggregated feature vector aq()l) and pass the vector through a fully connected

neural network:

h{) = ReLU (W(l) [h,gl—1>||a5}>]) (10)

where W) € R¥-1*d) js a learnable weight matrix for /th layer.

5 Graph Attention Network (GAT)

Graph Attention Network (Velickovié et al., 2018) is a spatial graph neural
network technique that uses Self Attention to aggregate the neighborhood node
features. Self Attention is equivalent to computing a weighted mean of the
neighbourhood node features.

The original paper uses K masked self attention modules to aggregate node
features. For simplicity, we consider only one self attention block.

5.1 Aggregate

GAT uses an Attention module to compute the weighted mean of the neighbor-
hood node features as follows:

o) = Attention ({ (WY [WhI™V),u e N@)U{u}}) (1)

where Attention(.) is single fully connected layer with LeakyReLU, W €
Rla-n*dw and ol is the coefficient for neighbour node u. The authors use
weighted linear combination of neighbours (Bahdanau et al., 2014) but the ag-
gregation technique is agnostic to the choice attention mechanism.

5.2 Combine
)

The aggregated node feature a,’ is multiplied with a learnable weight matrix
followed by a non-linear activation to get the node feature hg)for the [th layer,

h{) = ReLU (Sum {aff)Whgfl), ueN(@w)U {v}}) (12)

6 Related Works

Apart from GCN, Graphsage, and GAT, there are few more works that fre-
quently appear in the literature. SGN (Wu et al., 2019) simplifies GCN by
removing non-linearity between the GCN layers. Furthermore, to achieve the
same “receptive field” of having K’ GCN layers, they take the graph laplacian to
the power of K and show equivalent performance. Xu et al. (2018b) introduced
jumping knowledge networks that aggregate node features generated from all
the previous layers to compute the final vector using mean or max-pooling. This
allows the model to learn better structure-aware representations of the graph.
R-GCN (Schlichtkrull et al., 2018) and Directed-GCN (Marcheggiani and Titov,
2017) extend the GCN to relational graphs.

References

Bahdanau, D., Cho, K., and Bengio, Y. (2014). Neural machine translation by
jointly learning to align and translate. arXiv preprint arXiv:1409.0475.

Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O., and Dahl, G. E. (2017).
Neural message passing for quantum chemistry. In Proceedings of the 34th
International Conference on Machine Learning-Volume 70, pages 1263-1272.
JMLR. org.

Hamilton, W., Ying, Z., and Leskovec, J. (2017a). Inductive representation
learning on large graphs. In Advances in Neural Information Processing Sys-
tems, pages 1024-1034.

Hamilton, W. L., Ying, R., and Leskovec, J. (2017b). Representation learning
on graphs: Methods and applications. IEEFFE Data Eng. Bull., 40:52-74.

Kipf, T. N. and Welling, M. (2016). Semi-supervised classification with graph
convolutional networks.

Li, Q., Han, Z., and Wu, X.-M. (2018). Deeper insights into graph convolutional
networks for semi-supervised learning. In Thirty-Second AAAI Conference on
Artificial Intelligence.

Marcheggiani, D. and Titov, I. (2017). Encoding sentences with graph convolu-
tional networks for semantic role labeling. arXiv preprint arXiv:1703.04826.

Schlichtkrull, M., Kipf, T. N., Bloem, P., Van Den Berg, R., Titov, I., and
Welling, M. (2018). Modeling relational data with graph convolutional net-
works. In European Semantic Web Conference, pages 593—-607. Springer.

Velickovié, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., and Bengio,
Y. (2018). Graph Attention Networks. International Conference on Learning
Representations.

Wu, F., Souza, A., Zhang, T., Fifty, C., Yu, T., and Weinberger, K. (2019).
Simplifying graph convolutional networks. In International Conference on
Machine Learning, pages 6861-6871.

Xu, K., Hu, W, Leskovec, J., and Jegelka, S. (2018a). How powerful are graph
neural networks?

Xu, K., Li, C., Tian, Y., Sonobe, T., Kawarabayashi, K.-i., and Jegelka, S.
(2018b). Representation learning on graphs with jumping knowledge net-
works. arXiv preprint arXiv:1806.03536.

Appendix
A Graph Laplacian

The adjacency matrix and degree matrix can be combined to get the graph
Laplacian.

L=D-A (13)

where L is the graph laplacian, D is the degree matrix and A is the adjacency
matrix.
The symmetric normalized graph laplacian can be formally defined as:

Lgm =D (LD 3 =[-D 3AD % (14)

where I is the Identity matrix.
The elements of Ly, are given by:

1 ifi == janddeg(v;) # 0
1 . .
N ifi
Li =\ " Vaestoodeatey 17 (15)
0 otherwise

B Original GCN

In section 3, we interpreted GCN (Kipf and Welling, 2016) as a mean aggregator.
However, there is a subtle difference between our interpretation and the original
GCN.

Consider the adjacency matrix A and its degree matrix D. Let H® be the
node features for the Ith layer and H(®) = X. The propagation rule for each
GCN layer is as follows:

FHO A) =0 (D—%AD—%HWW(”) (16)

with A = I + A where I is the identity matrix and degree matrix D of A.

